Focus on Optical Communication, Astronomy and Lasers in Space

Recent news and general information about space optics for communication and astronomy

Light is used by astronomers to look in the past. Light will be used by engineers for space communication in the future. Together, these two goals illustrate the field of possibilities that can be achieved. Discover below the associated challenges, some past successful experiments and a few future projects all related to light propagation in space and in the Earth’s atmosphere. Our motivations: share current scientific and engineering challenges with a large audience.


Forecasting of optical turbulence

  • 5 min read

Optical turbulence (OT) is a generic term referring to the impacts of atmospheric turbulence on the propagation of optical waves in general. It is often used in both fields of astronomy and optical communication, especially when describing different quantities, tools or approaches to characterize atmospheric effects on optical waves. In this post, a general approach for forecasting OT is presented, that has many applications at astronomical and optical communication sites.

Read More

International Conference on Space Optics (ICSO), 2022

  • 1 min read

For this new edition of the International Conference on Space Optics (ICSO), organized by European Space Agency (ESA), nothing has been left to chance. Plenary, technical and poster sessions were perfectly intertwined with several networking events, much appreciated by the space optics community after more than two years of online events.

Read More

Meet the refractive index structure parameter

  • 11 min read

Put a straw in a glass of water and take a close look. It appears to be bent or, even worse, broken in two. This is because of refraction, the physical phenomenon behind the redirection of waves (such as light) when there is a change of propagation medium (i.e. water to air in this case). Similarly, the Earth’s atmosphere modifies the trajectory of light. In fact, our atmosphere is not a uniform medium since each layer of air has its own properties (pressure, temperature, density, …). Hence, refraction occurs between the different layers, forcing the light from a star to zigzag before reaching our eyes for example. Why a zigzag and not just a curved path? Because of turbulence in the atmosphere that randomly modifies local atmospheric properties, thus randomly changing the redirections of the light. This leads to the twinkling of stars, also named scintillation.

Read More

Introduction to optical communication for space applications

  • 6 min read

$\cdot \cdot - \cdot \text{ } \cdot \cdot \cdot \text{ } - - -$? Do you remember once using a flashlight to send Morse code to a friend? Then both of you were using a form of optical wireless communication. Now imagine doing it so fast that your eyes cannot see the flashlight blinking anymore, transmitting more data that your brain would never be able to process, over distances that cannot be travelled in a lifetime. THIS is real optical wireless communication.

Read More

Atmospheric challenges for astronomy

  • 5 min read

In their fascinating quest of observing the universe, astronomers are facing gargantuan challenges such as the faintness of distant objects, the blindness arising from absorption in nebulae (i.e. gas clouds) or even light pollution from human activities. And one of the biggest of these challenges is also the closest to us: the Earth’s atmosphere and its associated blurriness.

Read More

Twinkling of stars

  • 2 min read

Stars are twinkling. Any of us can observe this phenomenon by looking at a clear night sky: stars seem to quickly change of apparent brightness, colour or even position. This is what is described as twinkling. In fact, the origin of this phenomenon is not related to the stars themselves but rather to the medium in which their light propagates at the end of their long journey through space: our atmosphere.

Read More

Welcome to FOCALS

  • ~1 min read

Welcome to FOCALS! On this website, you will get access to numerous posts related to optical communications and optical astronomy, highlighting the challenges and the future of these research fields!

Read More